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Abstract

At high temperature the e}ective thermal conductivity of a bulk material with a large temperature di}erence may
di}er from the local equivalent thermal conductivity of a unit cell at the mean temperature due to radiation[ This paper
analyzed the local equivalent thermal conductivity and the e}ective thermal conductivity for porous materials with
cylindrical and spherical air cavities[ Prediction for a spherical case agrees well with experimental data[ Investigation
shows that the equivalent thermal conductivity at mean temperature can well represent the e}ective thermal conductivity
for a cavity diameter of ³ 4 mm and porosity ³ 67) although the local equivalent conductivity can vary enormously[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A surface area
F view factor
h half length of a unit cell
H length of the bulk material
k thermal conductivity
n normal vector
Q heat ~ux
R thermal resistance and diameter of cavity
S cross!sectional area
T temperature
V volume
w porosity[

Greek symbols
G interface boundary
s StefanÐBoltzmann constant[

Subscripts
a top surface temperature of the bulk materials

� Corresponding author
0 Present address] Department of Mechanical Engineering\

University of Alberta\ Edmonton\ Alberta\ Canada T5G 1G7[

b bottom surface temperature of the bulk materials
e} e}ective thermal conductivity
eq local equivalent conductivity
g gaseous phase
i ith cell
r thermal radiation
s solid phase
V rearrange parts
0 phase 0:surface above the thin slice:top surface of a
unit cell
1 phase 1:surface below the thin slice:bottom surface
of a unit cell[

0[ Introduction

The interest in e}ective thermal conductivity of multi!
phase composite materials has continued for over a
century[ This is essentially due to the wide application of
composite materials in industry[ The bulk features of the
materials depend on factors such as composition\ internal
structure and external environment[ It will be\ however\
too complicated to consider all the factors in the study of
the e}ective thermal conductivity[ No report of universal
models incorporating all the in~uencing factors has yet
been found[
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As re~ected in the literature\ there are still many
researchers working in this _eld in recent years in the
hopes of making further progress ð0Ð09Ł[ Their works
mainly concentrated on two aspects[ The _rst was to
introduce more re_ned mathematical averaging methods
to get an exact or approximate analytical solution[ Aur!
iault et al[ ð0Ð3Ł developed the double scale method by
means of asymptotic developments[ Furman�ski et al[ ð4\
5Ł investigated the e}ective thermal conductivity of het!
erogeneous materials by using the ensemble averaging
technique[ Gu ð6Ł reviewed the Rayleigh method and
introduced the transformation _eld method and the allo!
cation method[ The second is to consider the e}ects of
geometry factors such as shape\ size\ etc[ on the e}ective
thermal conductivity[ Various parameters were intro!
duced to modify the original equations in order to extend
their application range or to improve the accuracy[ Allitt
et al[ ð7Ł compared the accuracy of some models with
experimental data and introduced a correction factor\
Porosity Shape Factor[ Verma et al[ ð8\ 09Ł considered
the in~uence of factors such as sphericity of the particles\
particle cross!section ratio\ etc[ and introduced some cor!
rection factors too[

The research work in this _eld mainly focused on the
e}ects of composition and internal structure on the e}ec!
tive thermal conductivity of composite materials and the
thermal conductivity of the bulk material is usually taken
as that of a unit cell at some average temperature[ In fact\
the temperature distribution over the bulk material may
have e}ects on the e}ective thermal conductivity\
especially for those with large temperature di}erence[ For
instance\ temperature di}erence over thermal insulation
layers in industrial furnaces can be beyond 0999>C[ In
this paper\ the widely used composite materials\ porous
materials with air as an enclosed disperse phase is con!
sidered[ For this kind of material\ the environment tem!
perature di}erence may in~uence the e}ective thermal
conductivity due to thermal radiation in cavities[ The
e}ect of the thermal radiation is considered and the local
equivalent thermal conductivity of unit cells is derived as
a function of local temperature[ Then the e}ective ther!
mal conductivity for the bulk material is obtained using
the local equivalent thermal conductivity as a function of
temperature[ Finally\ comparison is made between the
e}ective thermal conductivity of the bulk material and
the equivalent conductivity at mean temperature[

1[ The local equivalent conductivity and effective

thermal conductivity of the bulk material

Heat transport in porous materials is in three ways] "0#
heat conduction in solid and air^ "1# thermal radiation
between cavity surface^ and "2# convection of gas in cavi!
ties[ These ways are always coupled with each other[
Therefore\ the heat transfer in porous materials is very

Fig[ 0[ A unit cell of periodic porous material[

complicated[ To simplify the problem\ the following
assumptions are employed in this paper\ which were
adopted by some researchers ð8\ 09Ł[ "0# The porous
material has a periodic structure and the period is very
small compared with the bulk material[ "1# The con!
vection in cavities is negligible and "2# cavity surface is
assumed to be black and air to be transparent when the
e}ect of thermal radiation in cavities is considered[

The analysis starts from investigating the properties of
one of the periodic unit cells[ The results will then be
extended to the bulk material[ Figure 0 illustrates the
geometry of such a unit cell[ At steady state\ the heat
transfer in the cell can be described by

9 ="ki9Ti# � 9 i � 0\ 1[ "0#

On the boundary\ one has

T0 =G � T1 =G

k0

1T0

1n bdA0

� k1

1T1

1n bdA0

¦sT3
dA0

−gG
sT3

dA1
dFdA0−dA1

where k is the thermal conductivity\ T is the absolute
temperature\ subscripts 0 and 1 indicate solid and air\
respectively\ G is the boundary between the two phases\
dA0\ dA1 are arbitrary in_nitesimal areas on G\ n is a
normal unit vector of dA0 and dF the view factor[ Here
the cavity surface is assumed to be black[

Although equation "0# has a very simple form\ it is
almost impossible to obtain an analytical solution
because of the complexity of geometry and boundary
conditions[ To solve the problem\ further assumptions
are necessary\ that is\ the temperature linearly distributes
along the heat ~ux over a unit cell[ According to the
previous assumption\ the size of a unit cell is very small
compared with the bulk materials[ Therefore\ this
assumption on temperature distribution of a unit cell will
not have much in~uence on the temperature over the
bulk material[ Verma et al[ ð09Ł employed this assumption
when they investigated the thermal properties of solidÐ
solid composite materials[

The bulk material can be regarded as a series con!
nection of the unit cells[ So the derivation of the equi!
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valent thermal conductivity of the unit cells is the starting
point of this work[

Each unit cell consists of solid and gas phases[ The
unit cell can be divided into thin slices normal to the heat
~ux with thickness dy as shown in Fig[ 0[ The thin slices
are in two categories] solid slices composed of only solid
phase and solidÐair slices composed of solid and gas
phases[ From the de_nition of thermal conductivity\ the
local equivalent thermal conductivity of these slices can
be determined[ For the _rst category\

k0 � ks[ "1#

For the second

k1 �"Qs¦Qg¦Qr# > 0
dT
dy

= S1 "2#

where S is the cross!section of the slice\ Qs is the con!
duction heat ~ux through the solid part with the cross!
section Ss\

Qs � ks

dT
dy

= Ss[ "3#

Qg is the conduction ~ux through the air with the cross!
section Sg\

Qg � kg

dT
dy

= Sg[ "4#

Qr is the radiation heat ~ux through the thin slice and
can be expressed by

Qr � gA0
gA1

sT3
dAi

dFdAi−dAj
dAi

−gA1
gA0

sT3
dAj

dFdAj−dAi
dAj "5#

where A0 and A1 indicate the areas of cavity surface which
are above and below the thin slice\ respectively\ dAi and
dAj are arbitrary in_nitesimal areas on A0 and A1\ re!
spectively\ s is StefanÐBoltzmann constant[ Due to the
linear temperature assumption over the cell\ the tempera!
ture gradient is

dT
dy

�
T0−T1

1h
"6#

where T0\ T1 are boundary temperatures of the unit cell
and 1h is the length of the unit cell[ Combining equations
"2#Ð"5# yields

k1 � ks

Ss

S
¦kg

Sg

S
¦

Qr

T0−T1

1h
= S

[ "7#

Suppose all the thin solid slices can be rearranged tog!
ether as part V0 and all the thin solidÐgas slices can be
rearranged together as part V1[ The unit cell then becomes
a series connection of the two parts\ as shown in

Fig[ 1[ "a# Series connection of two parts V0 and V1[ "b# Network
of Fig[ 1"a#[

Fig[ 1"a#[ The total thermal resistance of the unit cell is
obtainable by adding the thermal resistance of the two
parts\ as shown in Fig[ 1"b#\

Rcell � RV0
¦RV1

"8#

where RV0
and RV1

are the thermal resistance of V0 and
V1\ respectively and are related to the equivalent thermal
conductivity of the two parts[ Because of the linear tem!
perature gradient assumption\ the average equivalent
thermal conductivities of the two parts are used\

kV0
� gh0

k0 dy:h0 � ks "09#

kV1
�

ks

h1S gh1

Ss dy¦
kg

h1S gh1

Sg dy

¦
0

T0−T1

1h
h1S

gh1

Qr dy[ "00#

Then

RV0
�

h0

ksS
"01#

RV1
�

h1
1

ks gh1

Ss dy¦kg gh1

Sg dy¦
1h

T0−T1 gh1

Qr dy
[

"02#

Using equations "8#\ "01# and "02#\ the equivalent thermal
conductivity of the unit cell becomes

keq � 2
h0

1ksh

¦
h1

1S

1h 0ks gh1

Ss dy¦kg gh1

Sg dy¦
1h

T0−T1 gh1

Qr dy13
−0

[

"03#
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So far the equivalent thermal conductivity for a local unit
cell or a period keq is obtained[ In the case that two phases
are solid\ the equivalent thermal conductivity of a unit
cell can be simply regarded as the e}ective thermal con!
ductivity of the bulk material due to the absence of ther!
mal radiation[ However\ for the porous materials\ keq

is the function of local temperature because of thermal
radiation in cavities and is di}erent from that of the
bulk material[ Consider the one!dimensional problem as
shown in Fig[ 2\ where H and Hi indicate thickness of the
bulk material and the ith unit cell along the heat ~ux\
respectively[ Ta and Tb are the temperatures on the
boundary of the bulk material and keq"Ti# is the equi!
valent thermal conductivity of the ith unit cell[ To
guarantee the heat ~ux conservation along the y!direc!
tion\ one has

keff "Tb−Ta#
H

�
keq"Ti#DTi

Hi

�

s
n

i�0

keq"Ti#DTi

s
n

i�0

Hi

"04#

where ke} is the e}ective thermal conductivity of the bulk
material\ DTi is the temperature di}erence over the ith
unit cell[ From equation "04#\ ke} can be written as

keff �
g

Tb

Ta

keq dT

Tb−Ta

[ "05#

Because the size of the period V is very small compared
with the bulk size of the porous material\ integration is
employed here to replace the series summation[

Although the e}ective thermal conductivity of porous
materials can be calculated by combining equation "03#
with "05# for irregular cavity shape\ it is still very di.cult
to get an analytical expression due to the existence of
thermal radiation[ The following paragraphs will present
two cases with cylindrical and spherical cavities to see the
temperature di}erence e}ect[

"0# Case 0] cylindrical cavity

Cavities are assumed to have a cylindrical shape ver!
tical to the heat ~ux and distributed uniformly in a solid[
A unit cell is selected and a polar coordinate system is

Fig[ 2[ Illustration of the local unit cell and the bulk material[

Fig[ 3[ A unit cell of the porous material with cylindrical cavities[

applied to the unit cell\ as shown in Fig[ 3[ This is a two!
dimensional problem[ Based on the linear temperature
distribution assumption\ the temperature of an arbitrary
point on the cavity surface can be expressed by

T"8# � a sin 8¦b "06#

where

a � 0
1
"T?0−T?1#

b � 0
1
"T?0¦T?1# "07#

T?0 and T?1 are the temperatures of the top and bottom
point on the cavity surface\ respectively and can be ex!
pressed as

T?0 �
R
1h

"T0−T1#¦
0
1
"T0¦T1# � a¦b "08#

T?1 � −
R
1h

"T0−T1#¦
0
1
"T0¦T1# � −a¦b "19#

T0 and T1 are the temperatures on the top and bottom
boundary of the unit cell[

The position of a thin slice is shown in Fig[ 3 with
u $ ð−p:1\ p:1Ł[ An in_nitesimal strip is taken from the
cavity surface[ If the strip is above the thin slice\ that is
8 $ ðu\ p−uŁ\ the view factor from the in_nitesimal strip
to the thin slice can be expressed as ð00Ł

Fd8−S �
z1
1

sin 0
p

3
¦

u

11 0sin
8

1
¦cos

8

11[ "10#

If the in_nitesimal strip is below the thin slice\ that is
8 $ ðp−u\ 1p¦uŁ\ the view factor is

Fd8−S �
z1
1

cos 0
p

3
¦

u

11 0sin
8

1
−cos

8

11[ "11#

The net radiative heat ~ow through the thin slice can be
expressed by

Qr "u# � g
p−u

u

Fd8−SsT3"8#R d8
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−g
1p¦u

p−u

Fd8−SsT3"8#R d8

� sR $a3 0
1
52

sin2 u cos u¦
05
204

sin u cos u1
¦a2b 0

3
6

sin1 u cos u¦
7
24

cos2 u

¦
13
24

cos u1¦a1b1 0
7
4

sin u cos u1
¦ab2 0

05
2

cos u1%[ "12#

From equation "12#\ the integral term in equation "03#\
Ðh1

Qr dy\ can be obtained

gh1

Qr dy � g
p:1

−p:1

Qr d"R sin u#

� sR1 0
3p

4
a2b¦

7p

2
ab21[ "13#

The other terms in equation "05# can also be obtained\

gh1

Ss dy � g
p:1

−p:1

"1h−1R cos u# d"R sin u# � 3hR−pR1

"14#

gh1

Sg dy � g
p:1

−p:1

1R cos u d"R sin u# � pR1[ "15#

From equations "13#Ð"15# and "03#\ the expression of
the equivalent thermal conductivity of the unit cell is

keq � &
h−R
ksh

¦
3R

ks"3h−pR#¦kgpR¦7psR1 0
3
4
a1b¦

1
2
b21'

−0

[

"16#

By comparing the two terms\ 3
4
a1b and 1

2
b2\ it is apparent

that the _rst item is much smaller than the second one[
Equation "16# can be simpli_ed by neglecting the term
3
4
a1b\

keq � &h−R
ksh

¦
3R

ks "3h−pR#¦kspR¦
05
2

psR1T2'
−0

"17#

where T � b �"T0¦T1#:1[ The e}ective thermal con!
ductivity of the composite material can be obtained by
substituting equation "17# into equation "05#\

keff �
0
A

−
0

2A1CD1"Tb−Ta#
ln

Tb¦D
Ta¦D

¦
0

5A1CD1"Tb−Ta#
ln

T1
b−DTb¦D1

T1
a−DTa¦D1

−
0

z2A1CD1"Tb−Ta# 0arctg
1Tb−D

z2D
−arctg

1Ta−D

z2D 1
"18#

where coe.cients A\ B\ C and D are

A �
0
ks $0−0

3w
p 1

0:1

% "29#

B � ks $0
p

3w1
0:1

−
p

3%¦
pkg

3
"20#

C � 3
2
psR "21#

D � 0
B
C

¦
0

AC1
0:2

"22#

w is the porosity of the material

w �
Vg

V
�

pR1

3h1
[ "23#

"1# Case 1] spherical cavity

For a unit cell with spherical cavities\ a spherical coor!
dinate system is applied as shown in Fig[ 4[ The tem!
perature of an arbitrary point on the cavity surface can
be expressed as

T"8# � a cos 8¦b[ "24#

Coe.cients a and b have the same expression as equation
"07#[ The temperatures at the top and bottom points on
the cavity surface are T?0 and T?1\ respectively and can be
calculated from equations "08# and "19#[ T0 and T1 are

Fig[ 4[ A unit cell of the porous material with spherical cavities[
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the temperatures on the top and bottom boundary of the
unit cell\ respectively[

The view factor between two arbitrary in_nitesimal
areas on the spherical cavity surface is ð00Ł

dFdA0−dA1
�

0

3pR1
dA1[ "25#

The location of a thin slice is shown in Fig[ 4 for u $ ð9\ pŁ[
Here S0 and S1 are employed to denote the part of the
cavity surface above and below the thin slice\ respectively[

Similar to the procedure in the cylindrical cavity case\
the equivalent thermal conductivity of a unit cell is

keq � &
h−R
ksh

¦
7hR

ks 07h1−
3
2

pR11¦
3
2

kgpR1¦
05
2

spR2b2'
−0

"26#

and the e}ective thermal conductivity of the bulk porous
materials with spherical cavities

keff �
0
A

−
0

2A1CD1"Tb−Ta#
ln

Tb¦D
Ta¦D

¦
0

5A1CD1"Tb−Ta#
ln

T1
b−DTb¦D1

T1
a−DTa¦D1

−
0

z2A1CD1"Tb−Ta# 0arctg
1Tb−D

z2D
−arctg

1Ta−D

z2D 1
"27#

where A\ B\ C\ D are

A �
0
ks $0−0

5w
p 1

0:2

% "28#

B � ks $0
p

5w1
0:2

−
p

5 0
5w
p 1

0:2

%¦
kg

5 0
5w
p 1

0:2

"39#

C �
1
2

psR 0
5w
p 1

0:2

"30#

D � 0
B
C

¦
0

AC1
0:2

[ "31#

The porosity of the material

w �
Vg

V
�

pR2

5h2
[ "32#

2[ Results and discussion

If the cavities in material have simple geometry\ for
example\ cylindrical or spherical ones and distribute uni!
formly in the solid\ the local equivalent and e}ective

thermal conductivities are computable directly from
equations "17# and "26# and equations "18# and "27#[
The parameters involved in these equations are geometry
parameters R\ porosity w\ thermal conductivity of the
solid phase and air ks and kg\ temperatures on the surface
of the bulk materials Ta and Tb and some physical con!
stants p and s[ Once these parameters are known\ the
e}ective thermal conductivity of the bulk material can be
easily determined[

2[0[ Comparison with experiment

In order to check the accuracy of this approach\ the
calculation values are compared with available exper!
imental data[ Frand and Kingery ð01Ł investigated the
e}ective thermal conductivity of porous material by
means of an experimental approach[ Several specimens
were made in the shape of a one!inch cube[ Alumina is
used as a solid phase and cavities are spherical[ The
cavities distributed uniformly in the specimens with a
diameter of 9[920 cm[ By changing the cavity number
in the unit volume\ the specimens can have a di}erent
porosity[ Frand and Kingery ð01Ł only gave the average
measurement temperature Tm\ corresponding to
Tm �"Ta¦Tb#:1 in this paper[ A temperature di}erence
of 29>C is employed in the calculation of equation "27#[
The thermal conductivity of alumina ð01Ł is given in Table
0[ Table 1 lists the comparison between our calculation
results from equations "26#\ "27# and the experimental
data[ Parameter e is the divergence between the cal!
culation results and the experimental data[

Table 1\ demonstrates that the predictions of equation
"27# have very high accuracy[ The largest divergence is
00[1)[ It can also be found that when the temperature
and porosity are low\ calculation agrees very well with
the experimental data[ At high temperature and porosity\
however\ the divergence increases and the predicted
values are generally greater than the experimental data[
There are several causes that may account for this
phenomena[ "0# The cavity surface is not black[ As the
temperature and porosity increase\ equation "27# over!
predicts the heat transfer by thermal radiation in cavities[
"1# Temperature distribution is di}erent from the linear
assumption\ especially at large pores and high tem!
perature gradients[ "2# The temperature di}erence over
the samples in the experiments may be greater than 29>C
as assumed in the above calculation[ At the same average
temperature\ greater di}erence means lower and higher

Table 0
Thermal conductivity of alumina

Tm ">C# 199 399 599 799
ks "W m−0 K−0# 10[05 01[43 7[25 5[68
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Table 1
Comparison of predicted e}ective thermal conductivity ðequation "27#Ł with the experimental data

Tm 199>C 399>C 599>C 799>C

w kexp kcal e kexp kcal e kexp kcal e kexp kcal e
")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")#

K−0# K−0# K−0# K−0# K−0# K−0# K−0# K−0#

9[012 07[18 07[24 9[2 09[86 09[77 9[7 6[21 6[15 9[7 4[64 4[89 1[5
9[123 05[19 04[72 1[2 8[30 8[28 9[1 5[16 5[16 9[9 3[70 4[09 5[1
9[299 03[26 03[30 9[2 7[25 7[44 1[2 4[27 4[60 5[0 3[07 3[54 00[1
9[331 00[49 00[46 9[5 5[68 5[76 0[1 3[33 3[59 3[0 2[39 2[63 09[9
9[376 09[34 09[61 1[5 5[90 5[26 5[9 2[81 3[15 7[6 2[03 2[37 09[7

temperatures at the opposite ends of the specimen[ The
equivalent thermal conductivity of the unit cell is a func!
tion of temperature[ At lower temperatures\ the thermal
radiation is reduced and hence the equivalent thermal
conductivity[

2[1[ The temperature difference effect

The predictions of equivalent thermal conductivities at
mean temperatures are made in Table 2[ The values are
almost the same as that of equation "27#\ which\ in turn\
demonstrates that the in~uence of a small temperature
di}erence over the bulk material is very small[ To see
the temperature di}erence e}ect on the e}ective thermal
conductivity\ Table 3 compares equation "27# with a large
temperature di}erence of 0399>C with the experimental
data at a mean temperature 799>C[ It also lists the values
of equivalent thermal conductivities at lowest and highest
temperatures[ It can be seen that the temperature di}er!
ence has almost no e}ect on the conductivity[ Since the
values of thermal conductivities of alumina and air at the
mean temperature are used\ only the variation of thermal
radiation in the cavities is considered[ One can deduce
that the thermal radiation in cavities is negligible in the

Table 2
Comparison of the local equivalent thermal conductivity ðequation "26#Ł at the mean temperature with experimental data

Tm 199>C 399>C 599>C 799>C

w kexp kcal e kexp kcal e kexp kcal e kexp kcal e
")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")# "W m−0 "W m−0 ")#

K−0# K−0# K−0# K−0# K−0# K−0# K−0# K−0#

9[012 07[18 07[24 9[2 09[86 09[77 9[7 6[21 6[15 9[7 4[64 4[89 1[5
9[123 05[19 04[73 1[1 8[30 8[28 9[1 5[16 5[16 9[9 3[70 4[00 5[1
9[299 03[26 03[30 9[2 7[25 7[44 1[2 4[27 4[61 5[2 3[07 3[55 00[4
9[331 00[49 00[47 9[6 5[68 5[77 0[2 3[33 3[50 2[7 2[39 2[65 09[5
9[376 09[34 09[64 1[8 5[90 5[28 5[2 2[81 3[17 8[1 2[03 2[49 00[4

Table 3
Predictions of equation "27# with temperature di}erence of
0399>C at mean temperature 799>C and prediction of equation
"26# at lowest\ highest and mean temperature

w ke} keq k�eq k�eq
")# "T � 799>C# "T � 799>C# "T � 099>C# "T � 0499>C#

9[012 4[89 4[89 4[89 4[81
9[123 4[09 4[00 4[09 4[04
9[299 3[54 3[55 3[53 3[60
9[331 2[64 2[65 2[63 2[72
9[376 2[37 2[49 2[37 2[47

� Thermal conductivities of alumina and air are the values at the
mean temperature[

experimental specimens of ð01Ł[ Usually\ the temperature
e}ects on conductivities are considered in ks and kg and
a linear variation of ks and kg with the temperature is
a very good approximation[ From equation "05#\ the
temperature di}erence will not alter the e}ective thermal
conductivity for linear variation[ Only the variation of
thermal radiation may induce a temperature di}erence
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Table 4
Variation of equivalent and e}ective thermal conductivities with cavity diameter for Tm � 799>C and tem!
perature di}erence � 0399>C

Cavity 1R ke} keq k�eq k�eq
"mm# "T � 799>C# "T � 799>C# "T � 099>C# "T � 0499>C#

Spherical "w � 9[41# 0[9 2[11 2[25 2[29 2[51
4[9 2[25 2[55 2[20 3[83

09[9 2[42 3[91 2[21 5[47
19[9 2[75 3[64 2[24 8[75

Cylindrical "w � 9[67# 0[9 0[57 0[57 0[43 1[19
4[9 1[41 1[15 0[45 3[72

09[9 2[45 2[99 0[59 7[01
19[9 4[53 3[35 0[55 03[6

� Values of thermal conductivities of alumina at mean temperature are used[

e}ect[ So the following part will focus on the conditions
where thermal radiation may play an important role[

From equations "17# and "26#\ it is easy to know that a
large cavity diameter\ high porosity and high temperature
will increase the fraction of thermal radiation[ For a
spherical cavity\ the largest possible porosity is 9[4125[
An extreme case with w � 9[41 and Tm � 799>C is selec!
ted[ The temperature di}erence is set to 0399>C[ Table
4 lists the variation of equivalent and e}ective thermal
conductivities with a spherical cavity diameter[ The
di}erence between the e}ective and the equivalent ther!
mal conductivity at the mean temperature is not much[
The di}erences are 03)\ for 1R � 09 mm and 12) for
1R � 19 mm[ For most materials in application\ the cav!
ity diameter is below 09 mm or even smaller\ so the
temperature di}erence is not important and the equi!
valent thermal conductivity at the mean temperature can
well represent the e}ective thermal conductivity of the
bulk materials[ The last two columns in Table 4 tabulate
the equivalent thermal conductivity at temperatures of
099 and 0499>C in which the conductivities of alumina
and air at the mean temperature are used[ At a low
temperature\ the thermal radiation is not important and
is negligible[ At a high temperature\ however\ the thermal
radiation is very important\ especially at a large cavity
diameter[ The equivalent thermal conductivity can be
beyond the thermal conductivities of component solid
and air[

More signi_cant temperature di}erence e}ects could
be observed for a cylindrical cavity case where the higher
porosity can be reached[ This is also illustrated in Table
4[ Comparison with a spherical case shows that large
porosity will result in a greater temperature di}erence
e}ect and the variation of the equivalent thermal con!

ductivity over the bulk material is much more signi_cant[
If the diameter is below 4 mm\ however\ the e}ect of the
temperature di}erence e}ect is not very much[

3[ Summary

The e}ect of the temperature di}erence over the bulk
material on the e}ective thermal conductivity was dis!
cussed in this paper[ A concept of local equivalent ther!
mal conductivity was proposed and applied to derive
the e}ective thermal conductivity for the bulk material[
Analytical expressions for cavities with cylindrical and
spherical shapes were given[ Comparison with exper!
imental data of the spherical case is satisfactory[ Cal!
culation showed that the local equivalent thermal con!
ductivity over the bulk material di}ers very much[ The
temperature di}erence\ however\ is not signi_cant if the
diameter of the cavity is below 4 mm and the porosity is
smaller than 67)[ When the porosity is higher than 79)
and the cavity diameter is greater than 4 mm\ a strong
temperature di}erence e}ect is expected at a high tem!
perature and the temperature di}erence e}ect should be
considered[
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